Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Br J Med Med Res ; 2016; 12(12):1-7
Article in English | IMSEAR | ID: sea-182430

ABSTRACT

Introduction: The transpalatal arch has been used successfully for decades during routine orthodontic treatment for various purposes, including reinforcing anchorage. In the light of current scientific advancements with more precise knowledge of biology of tooth movement, it is prudent to study whether transpalatal arch is effective in preserving anchorage. Objectives: The aim of this finite element study was to evaluate and compare the effects of the transpalatal arch on periodontal stresses of molars and displacements when subjected to orthodontic forces. Methods: Stress patterns and displacements between models with and without a transpalatal arch were investigated by means of 3-dimensional finite element analysis. A finite element model of the maxillary first molars, periodontal ligament, alveolar bone, and transpalatal arch was created, that consisted of 1, 69,036 elements and 29,518 nodes. A simulated orthodontic retraction force of 2N was applied to the maxillary first molar in a mesial direction. Resultant von mises stresses were evaluated and compared in models with and without transpalatal arch, as well as displacement in models with and without transpalatal arch. Results: Results suggested that the presence of a transpalatal arch has no effect on molar tipping, decreases molar rotations, and reduces periodontal von mises stress magnitudes by less than 1%. Conclusions: The presence of the transpalatal arch induces only minor changes in the dental and periodontal stress distribution. Alternative methods can be used where absolute anchorage is required however transpalatal arch should not be considered an unnecessary tool in the treatment of orthodontic patients because of its various functions.

2.
Dental press j. orthod. (Impr.) ; 19(1): 5-7, Jan-Feb/2014.
Article in English | LILACS | ID: lil-709638

ABSTRACT

A common question about root resorption is raised in orthodontic practice: What is more important, the intensity of force or its distribution along the root, periodontal and alveolar structures? Diffuse distribution of forces applied to periodontal tissues during tooth movement tends not to promote neither extensive areas of cell matrix hyalinization nor significant death of cementoblasts that lead to root resorption. However, focal distribution or concentration of forces within a restricted area - as it occurs in tipping movements, even with forces of lower intensity - tend to induce extensive areas of hyalinization and focal death of cementoblasts, which is commonly associated with root resorption. In tipping movements, the apical regions tend to concentrate more forces in addition to wounding the cementoblasts due to the smaller dimension of their root structure as well as their cone shape. For this reason, there is an increase in root resorption. In the cervical region, on the other hand, the large area resulting from a large diameter and bone crown deflection tends to reduce the effects of forces, even when they are more concentrated, thus rarely inducing death of cementoblasts and root resorption.


Um questionamento comum sobre as reabsorções radiculares na prática ortodôntica: "O que é mais importante? A intensidade das forças aplicadas ou sua distribuição ao longo das estruturas radiculares, periodontais e alveolares?" A distribuição difusa das forças aplicadas sobre os tecidos periodontais durante o movimento dentário de corpo tende a não promover extensas áreas de hialinização da matriz extracelular, nem morte significativa de cementoblastos que levariam à reabsorção radicular. Porém, a distribuição focal ou concentração de forças - como nas inclinações, mesmo nas de menor intensidade - em uma área restrita tende a induzir áreas extensas de hialinização e morte focal de cementoblastos, associando-se mais comumente à reabsorção radicular. Nos movimentos de inclinação, as áreas apicais, por sua menor dimensão da estrutura radicular e sua forma cônica, tendem a concentrar mais ainda as forças e lesar cementoblastos, aumentando a frequência das reabsorções radiculares. Na região cervical, a maior área decorrente do maior diâmetro e a deflexão óssea da crista óssea tendem a reduzir os efeitos das forças, mesmo quando mais concentradas, muito raramente induzindo a morte de cementoblastos e reabsorções radiculares.


Subject(s)
Humans , Orthodontic Appliances , Root Resorption/etiology , Tooth Movement Techniques/instrumentation , Alveolar Process/pathology , Biomechanical Phenomena , Dental Cementum/pathology , Fibroblasts/physiology , Hyalin/physiology , Osteoblasts/physiology , Periodontal Ligament/pathology , Root Resorption/pathology , Stress, Mechanical , Tooth Apex/pathology , Tooth Cervix/pathology , Tooth Movement Techniques/adverse effects , Tooth Root/pathology
3.
Rev. odontol. mex ; 17(3): 152-155, jul.-sept. 2013. ilus, tab
Article in Spanish | LILACS-Express | LILACS | ID: lil-714517

ABSTRACT

La osteocalcina es una proteína no colágena presente en hueso alveolar, cemento radicular y subpoblaciones del ligamento periodontal. Esta proteína juega un papel importante en la biomineralización y en la matriz extracelular regulando la maduración de los cristales de hidroxiapatita y en el reclutamiento de los osteoclastos participando en la remodelación ósea. La remodelación y la nueva formación de tejido periodontal es parte esencial durante los movimientos ortodóncicos, los cuales al aplicar fuerzas causan tensión en las células provocando una adaptación que se traduce en respuestas celulares y moleculares que pueden afectar la matriz extracelular. Por ello, el propósito de esta investigación fue determinar la expresión de la osteocalcina asociada a la remodelación periodontal cuando se aplican fuerzas ortodóncicas. En primeros premolares superiores e inferiores se colocó aparatología fija prescripción Roth 0.022 con un arco NiTi 0.016, la cual se aplicó a todos los dientes de ambas arcadas con excepción de los premolares superiores e inferiores izquierdos. Los premolares sin aparatología (t = 0) y en presencia de aparatología para inducir movimientos ortodóncicos durante 1, 3, 5, 7 y 9 días; fueron extraídos para analizar la expresión de la osteocalcina en la matriz extracelular del ligamento periodontal. Para determinar la expresión temporal y espacial de los mensajeros de la osteocalcina en el ligamento periodontal se llevó a cabo la técnica RT-PCR. La expresión de la osteocalcina en el grupo experimental estuvo presente en todos los días de prueba, sugiriendo que los movimientos ortodónticos generan cambios que son susceptibles en las concentraciones del mensajero de la proteína osteocalcina.


Osteocalcin is a non-collagenous protein located in alveolar bone, root cementum and subpopulations of periodontal ligament cells. This protein plays an important role in the biomineralization process and in the extra-cellular matrix, regulating maturation of hydroxyapatite and osteoclast recruitment which participate in bone remodeling. Periodontal tissue new formation and remodeling is a vital part of the process during orthodontic movements. These movements, when force is exerted, cause tension in the cells, provoking adaptation which results in molecular and cellular responses which, in turn, can affect the extracellular matrix. Due to the aforementioned facts, the aim of the present research was to determine osteocalcin expression associated to periodontal remodeling when orthodontic forces are applied. Roth 0.022 " fixed brackets with a NiTi 0.016" archwire were applied to first upper and lower bicuspids. This was applied to all teeth of both arches except to left lower and upper bicuspids. Bicuspids without brackets (t = 0) as well as with brackets to elicit orthodontic movements during 1, 3, 5, 7 and 9 days were extracted to assess osteocalcin expression in the extra-cellular matrix of the periodontal ligament. The RT-PCR technique was followed to determine temporal and spatial expression of osteocalcin messengers. Osteocalcin expression in the experimental group was present in all test days, suggesting thus the fact that orthodontic movements elicit changes that are susceptible in osteocalcin protein messenger concentrations.

4.
Article in English | IMSEAR | ID: sea-144127

ABSTRACT

Background: Orthodontic forces may not only influence the dentoalveolar system, but also the adjacent and surrounding cortical bone. Aim: Since there is very limited information on this issue, we aimed to study the possible changes in maxillary cortical bone following the application of heavy orthodontic forces in mature normal and osteoporotic rats. Materials and Methods: Twenty-four 6-month-old female rats were selected and divided into an ovariectomized group and a normal group. In both groups, the rats were subjected to a 60 gr* orthodontic force on the upper right first molar for 14 days. Results: In both groups, histological sections showed that the application of this force caused hypertrophy and fatigue failure of the cortical maxillary bone. The osteogenic reaction to distraction is expressed by the formation of subperiosteal callus on the outer bony side, resembling that seen in distracted bones. Conclusion: From this study we concluded that heavy experimental orthodontic forces in rats affect the maxillary cortical bone. The osteogenic reaction to these forces, expressed histologically by subperiosteal callus formation, is similar to that seen in distraction osteogenesis models.


Subject(s)
Animals , Maxilla , Orthodontic Anchorage Procedures/adverse effects , Osteoporosis/complications , Osteogenesis, Distraction/etiology , Ovariectomy/adverse effects , Rats
5.
Dental press j. orthod. (Impr.) ; 15(5): 98-108, set.-out. 2010. ilus, tab
Article in Portuguese | LILACS | ID: lil-562900

ABSTRACT

OBJETIVO: desenvolver e validar, através do Método dos Elementos Finitos (MEF), um modelo numérico tridimensional (3D) de um incisivo central superior para simular o movimento dentário. MÉTODOS: esse modelo contempla a unidade dentária, o osso alveolar e o ligamento periodontal. Permite a simulação dos diferentes movimentos dentários e a determinação dos centros de rotação e de resistência. Limita o movimento ao espaço periodontal, registrando a direção, quantificando o deslocamento dentário e as tensões iniciais no ligamento periodontal. RESULTADOS: a análise dos deslocamentos dentários e das áreas que recebem tensões iniciais possibilita determinar os tipos de movimentos dentários. Com base nas forças ortodônticas, é possível quantificar a intensidade das tensões em cada região do dente, do ligamento periodontal ou do osso alveolar. Com base nas tensões axiais ao longo do ligamento periodontal e da tensão capilar, é possível predizer, teoricamente, as regiões em que deve ocorrer a remodelação óssea. CONCLUSÃO: o modelo foi validado pela determinação do módulo de elasticidade do ligamento periodontal de forma compatível com dados experimentais existentes na literatura. Os métodos utilizados na construção do modelo permitiram a criação de um modelo completo para uma arcada dentária, o qual possibilita realizar variadas simulações que envolvem a mecânica ortodôntica.


OBJECTIVE: To develop and validate a three-dimensional (3D) numerical model of a maxillary central incisor to simulate tooth movement using the Finite Element Method (FEM). METHODS: This model encompasses the tooth, alveolar bone and periodontal ligament. It allows the simulation of different tooth movements and the establishment of centers of rotation and resistance. It limits the movement into the periodontal space, recording the direction, quantifying tooth displacement and initial stress in the periodontal ligament. RESULTS: By assessing tooth displacements and the areas that receive initial stress it is possible to determine the different types of tooth movement. Orthodontic forces make it possible to quantify stress magnitude in each tooth area, in the periodontal ligament and in the alveolar bone. Based on the axial stress along the periodontal ligament and the stress in the capillary blood vessel (capillary blood stress) it is theoretically possible to predict the areas where bone remodeling is likely to occur. CONCLUSIONS: The model was validated by determining the modulus of elasticity of the periodontal ligament in a manner consistent with experimental data in the literature. The methods used in building the model enabled the creation of a complete model for a dental arch, which allows a number of simulations involving orthodontic mechanics.


Subject(s)
Finite Element Analysis , Imaging, Three-Dimensional , Tooth Movement Techniques/classification , Periodontal Ligament , Surface Tension , Facial Bones , Incisor , Orthodontic Brackets , Orthodontics , Tooth Socket
SELECTION OF CITATIONS
SEARCH DETAIL